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We present an algorithm to simulate the packing of large samples of spheres chosen from a
truncated log-normal distribution for either correlated or uncorrelated distributions. Use of a concept
known as the porosity index provides a means to control the final porosity of a packed sample within
a range that spans limits approaching random close packing and random loose packing structures.
Agreement with previous theoretical, computational, and experimental results is good, and results
of previously uninvestigated correlated systems are presented.

PACS number(s): 05.40.4+j, 05.45.4+-b, 81.05.Rm

I. INTRODUCTION

Porous media are significant in applications through-
out science and engineering fields; fluid flow and species
transport in such systems are frequently of interest.
Macroscopic continuum approaches are constructed by
averaging over a representative elementary volume of
porous media and are often used to derive fundamental
mass, momentum, and energy balance laws [1]. However,
these approaches require constitutive relations to close
the system of equations. Constitutive relations for single
and multiple phase fluid flow in porous media are often
empirically based (e.g., extended Darcy’s law, pressure-
saturation-permeability relations) [2—4], but can be ap-
proached theoretically as well [5]. Theoretical approaches
for deriving such constitutive relations require knowledge
of flow and transport phenomena at the pore scale, and
approaches to compute the relevant statistical moments
of the transport phenomena quantities of interest at the
macroscopic scale of concern. This in turn requires an
understanding of the pore structure of the porous me-
dia, which necessitates either extensive small-scale exper-
imental measurements or a theoretical approach for con-
structing a meaningful representation of the pore struc-
ture. Because of the difficulty, expense, and time required
to determine the pore structure experimentally, theoret-
ical approaches are conceptually appealing.

Many porous media systems can be represented in a
simplified manner as packed arrangements of spheres. To
be realistic, the size, porosity, and coordination number
distributions of the spherical packings should be similar
to those of the system being simulated. Further, many
natural porous media systems are stochastic and are of-
ten characterized by correlated random fields in space
[6]. It is expected that pore-size morphology distribu-
tions caused by nonuniform media, variations in packing
arrangement, and spatial correlation will lead to signif-
icant variations in certain macroscopic properties of ap-
plied interest, such as residual saturation of a nonwetting
fluid in a two-fluid multiphase system [7]. To date, pub-
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lished approaches to the packing problem have typically
been restricted in the porosity range considered and the
size of the system simulated. They have also been limited
to either a uniform or purely random spatial correlation
structure of the media.

The objectives of this work were: (1) to develop an
efficient algorithm capable of simulating a large number
of random-size spheres over a broad range of porosities,
for both uncorrelated and correlated structures; (2) to
compare results from the application of the developed
algorithm to existing theoretical, computational, and ex-
perimental results for similar systems; and (3) to evaluate
the effect of media properties on pore structure charac-
teristics for previously uncharacterized systems.

II. BACKGROUND

Meeting these objectives required a complete descrip-
tion of the pore morphology of a randomly packed porous
media typical of natural systems; therefore, approaches
relying on either systematic packing or yielding bulk
properties alone, such as porosity and coordination num-
ber, were not appropriate. These constraints led to the
consideration of random packing simulation models. Two
types of such models were given primary consideration:
sequential addition and collective rearrangement.

Sequential addition packing models start with a small
seed cluster of spheres and serially add a single sphere
at the surface of the cluster so that the added sphere
contacts three existing spheres. Several algorithms have
been developed for choosing the position of an added
sphere [8-12]. Although sequential addition models have
the advantage of simulating relatively large systems of
homogeneous spheres, they yield only a relatively loose
packing structure (high porosity, ¢), provide no explicit
mechanism to control ¢, produce final packing distribu-
tions that may be radially inhomogeneous [8], and have
not been used to produce packings of random spheres
with a specified spatial correlation.

Though sequential addition models have significant
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drawbacks, two key concepts can be gleaned from their
construction: rolling to obtain stable support and po-
sition ordering. In sequential addition methods, a new
sphere is brought into contact with the surface of the ex-
isting sphere pack. The sphere is then rolled along the
surface of the original contacting sphere until it is in con-
tact with two additional neighboring spheres, yielding a
three-sphere, nonoverlapping support. By repeating the
process multiple times for a vertically growing packed
structure, ordering the final positions by vertical posi-
tion, and choosing the lowest position from among the
set of trials, Visscher and Bolsterli [9] decreased ¢ from
0.418 to 0.400.

Collective rearrangement is the second major class of
spherical packing algorithm, in which packing porosities
typical of random, dense-packed systems can be simu-
lated. These algorithms consist of two main steps: initial
sphere size generation and placement, and iterative rear-
rangement to achieve an overlap-free condition. Initial
sphere size generation and placement is typically accom-
plished by simulated sampling from a given probability
density function—such as uniform or log normal—and lo-
cating all spheres randomly within a given domain, per-
mitting overlaps. Iterative rearrangement is then applied
to remove overlaps, a procedure in which different types
of relaxation techniques have been used [13-16]. Itera-
tive rearrangement methods, such as compression of a
hard-sphere gas, Monte Carlo simulation, and molecu-
lar dynamics techniques can generate packings with a
porosity and radial distribution similar to experimental
results [13,14,17]. However, these methods require inten-
sive computations, which limit potential simulation sizes.

Clarke and Wiley [18] developed an algorithm for the
iterative rearrangement of binary mixtures of spheres,
which relied upon both the movement along the vector
sum of overlapping surrounding spheres and the chang-
ing radii of spheres. The packing porosities obtained
from this algorithm were similar to the results of uniform
ball bearing packings, but only relatively small systems
were considered, on the order of 103-10* spheres. Re-
cently, Nolan and Kavanagh [19,20] presented a repulsive-
force algorithm for iterative rearrangement that consid-
ered uniform and log-normal distributions of spherical
particles. They introduced a particle-bridging mecha-
nism to simulate loose packing and found that the final
packing porosity was a function of the initial packing
porosity generated before rearrangement. However, due
to small simulation sizes, their results showed significant
variability.

III. PACKING ALGORITHM

Developing the packing algorithm requires two main
procedures: definition of an initial distribution of spher-
ical particles and rearrangement of these spheres to an
overlap-free state. Omnce developed, the algorithm re-
quires definition of (1) an initial domain size, (2) a
particle-size density function, (3) an initial correlation
structure, (4) an initial porosity (¢o), and (5) a porosity
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index (I). Alternatively, (4) and (5) can be replaced with
a specification of a desired final porosity.

A. Initial particle distribution

The initial distribution of particles is performed for a
hexahedral domain with periodic boundary conditions,
defined by a length (X), width (Y'), and an initial depth
(Z). The depth of the domain decreases during the
course of the simulation. All boundaries are maintained
throughout the simulation using periodic conditions.

Natural solid materials are often described using a log-
normal distribution [2,21,22]. Thus, a set of spherical
particles is generated by simulated sampling from a prob-
ability density function of the form

1 —(lnr—lnro)?
e 20 s
V2ro

where r is the radius of a sphere, ¢ is the standard devi-
ation in log space of the random variable Inr, and Inr, is
the mean of the normal distribution. In order to disallow
unreasonably large and small values for particle radii, the
distribution was clipped to fall within the 99% confidence
interval, meaning that the upper and lower 0.5% of the
log-normal distribution were truncated. In principle, al-
ternate non-negative probability density functions could
be used, but any long-tailed distribution would require
truncation, such as that used in the log-normal case.

Samples from the probability density function are used
to generate a set of spheres, which are assigned initial,
probably overlapping locations within the domain. The
initial location of sphere %, denoted as S; = S;(zi, i, 2:),
for the purely random case is assigned by independent
sampling from a uniform distribution, giving 0 < z; < X,
0<y; <Y,and 0 < z; < Z, where the domain is aligned
with and situated at the origin of a Cartesian coordinate
system.

For spatially correlated random packing, spheres are
located as described above. Radii are assigned based on
a mapping of the probability of the nearest neighbor in
a spatially-correlated, uniform distribution field (p field)
to the corresponding radius in the cumulative probability
density function of the spheres. The p field is defined over
a regular grid throughout the domain. Gaussian simula-
tion is used to generate the p field using an exponential
covariance model of the form [23]

2 2
C(hzvhy» hz) = exp{ —_ |: (lh_m) + (_l’ly,)
cx cy

f(lnr) =

(3.1)

(3.2)

where h is the separation distance, and [, is a correlation
length in the respective directions.

Spherical particles are located within the domain and
sized using the p-field procedure described above until
the initial porosity condition is met:
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where ¢o is the initial porosity, V; is the initial volume
of the domain, r; is the radius of particle 7, and N is the
total number of particles in the system.

The final step in the initial particle distribution portion
of the algorithm is to assign each particle to a cell location
within the domain in order to facilitate the location of
neighboring spheres needed for rearrangement. Cells are
established by dividing the domain into many small cubic
volumes of uniform size, each (d.) slightly larger than
the maximum sphere diameter (D,,); i.e., d. = D,, + 8,
where § < D,,. Each sphere in the initial packing is
then allocated to exactly one cell according to the site
coordinates of the sphere’s center.

B. Rearrangement

The iterative rearrangement algorithm that was de-
veloped is shown schematically in Fig. 1. An iteration
begins by searching for the nonregistered sphere S; with
the smallest 2z coordinate; a registered sphere is a stable,

Start with initial
packing data.

I

Find a non-registered
S; with the mini
z coordinate.

'

Move S; until no
overlaps.

Roll S; until a
stable site is found.

Random
displacement of S;.

Find spheres
overlapping S,

Move these spheres
to initial data.

Add an image
sphere S;,,?

Choose S; site
according to I.
Register ;.

FIG. 1. Main flow chart for sphere rearrangement.
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overlap-free sphere that is not allowed to move. S; is
then moved a small distance along the vector sum of the
overlaps with surrounding spheres (O;). O is defined as

Ot = Ow + Oy + Oza (34)
where
0, =i, (ri +71) — dy 1 (3.5)
d;
=1 * -
ne - 9
0, =iy (ri + 1) — da yzd o, (3.6)
il
=1t .
= [ 2z — 21 ]
0, =i, (’I‘i + T'[) —dy S , (37)
d;
=1t -
da=+(zi— @)+ (yi —w)? + (2 — 2)%,  (3.8)

iz, iy, and i, are the unit vectors along the z, y, and 2
directions, respectively, and n, is the number of spheres
overlapping S;.

Overlaps with stable spheres are searched for, both
within the same cell as S; and in the adjacent 26 cells.
Since d. = D,, + 6, all possible overlaps occur within
these 27 cells. The move is accepted as long as the mag-
nitude of O, does not exceed the maximum value, Oy ,.
We have found that O;,, =~ 7, maintains an efficient
overlap removal process.

The next step is to roll S; until a stable site is found.
Generally, a stable sphere is supported by at least three
contacting spheres underneath. More specifically, S; is
stable if the = and y coordinates of its center are within
the triangle formed by the & and y coordinates of the
centers of any three supporting spheres. A supporting
sphere, S;, is defined as one that contacts S; and has a
site lower than that of §;, i.e., z; < 2;. For a bridged
sphere, a stable condition is achieved when the sphere is
not only supported by one or two underlying spheres but
also balanced by the lateral support of one or two of its
neighbors.

Since smaller spheres are more mobile than larger
spheres, they can easily fail to find three support-
ing spheres; a tendency to move towards the bottom
along tortuous paths results—a physically realistic phe-
nomenon. In order to avoid undesired clustering of small
particles, however, particles with radii smaller than a cer-
tain limit r. (r. = 0.2r,) are considered stable when they
nest in the saddle formed between two underlying sup-
porting spheres.

When S; intersects a boundary, an image sphere, S;,,,
is added at the opposite boundary, so as to maintain the
periodic boundary condition. If this addition occurs, the
program finds the registered spheres overlapping S; and
moves them to the initial packing data.

The process of searching for a stable site for the S;
is repeated until N, stable sites for S; are found, where
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Sphere 5

FIG. 2. Special case in which sphere 7 is locked up in space.
Spheres 1, 2, 3, 4, and 5 are registered stable spheres.

N, is a user-specified parameter. These sites are then
indexed such that z;(1) > z;(2) > --- > 2;(NN,). The final
registered site is chosen according to an input control
parameter, called the porosity index, I, where 1 < I <
N,. The larger I is, the lower the site that is chosen, and
therefore the denser the packing that is produced. This
iterative process is repeated until the last sphere from
the initial packing is registered.

At high initial packing porosities, S; takes tens of
moves to eliminate overlaps. However, as the porosity
decreases, the number of moves increases; although mov-
ing a sphere along the vector sum of the overlaps reduces
some overlaps, it creates or increases others. At low ini-
tial packing porosities, some spheres fail to remove over-
laps within the allowed N,, steps of movement. When
this happens, S; is given a horizontal displacement by
defining

xz(l) = zz(o) + 61dc7 (3'9)

ui) =4 +bide, (3.10)
where z;(®) and y;(°) are previous z and y coordinates
for S;, z;(1) and y;()) are new z and y coordinates for S;,
and §; € [—1,1] is a uniformly distributed random value.
Thereafter a new iteration with S; is started.

At a low initial packing porosity, it is possible for S; to
become locked in a certain space so that it can never get
rid of overlaps. A two-dimensional illustration of such
a lock up is given in Fig. 2. In this case, the program
reduces the size of S; by 10%, and S; begins another
iteration. Even at low packing porosities, less than 5%
of the particles needed to shrink in size. This necessary
step in the algorithm resulted in maximum reductions in
ro of less than 0.9% and in o of less than 0.2%.

IV. RESULTS

A. Random close packing

We have run simulations containing between 10% and
5 x 10° spheres; findings showed that both the ¢ and the
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FIG. 3. Random close-packing results as a function of sim-
ulation size: (a) packing porosity; (b) mean coordination
number.

mean coordination number (6,:) are variable and thus
unreliable if the sample sizes are small. Figure 3 illus-
trates this effect for both ¢ and C,,, where the error bars
show the standard deviation associated with each data
point. Because of the influence of sample size, all the
properties presented below are measured for simulations
of at least 5 x 10* spheres.

In random close packing (RCP) of uniform spheres, we

———— This Work
T S R Finney [13] Experimental -

Radial Distribution Function
N

Sphere Diameters

FIG. 4. Simulated versus observed radial distribution func-
tion.
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FIG. 5. Packing porosity versus standard deviation for ran-
dom close packings.

obtained packing porosities from 0.3634 to 0.3635; these
values are in excellent agreement with the experimental
value of 0.3634 [8,13] and simulated results [18,19]. We
observed C,, for RCP from 5.94 to 5.95, which is in ex-
cellent agreement with the experimental value of ~ 6.0
[24] and simulated results [19,25,26]. The radial distribu-
tion function (RDF) for RCP (Fig. 4) exhibits secondary
peaks at 1.70, 1.98, 2.65, and 3.60 diam. These features
correspond to those of Finney [13] for a ball bearing as-
sembly and to the simulated results using collective rear-
rangement methods [18,19,27].

The packing porosities from close-packed simulations
for different size distributions are plotted as a function
of o in Fig. 5. This figure also shows results of close-
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FIG. 6. Mean coordination number versus standard devia-
tion for random close packings.

packed sands with a spherical coefficient value of 0.86
from the experimental work of Sohn and Moreland [28],
simulated packing porosities from Nolan and Kavanagh
[20], and theoretical calculations of Yu and Standish [29].
Our results are in excellent agreement with those of Sohn
and Moreland and the simulated results of Nolan and
Kavanagh, and are close to those of Yu and Standish.

Figure 6 shows the influence of ¢ on C,, for RCP. Re-
sults from Powell [26] and Nolan and Kavanagh [20] are
shown as well. With an increase in o, Powell’s data
remain approximately unchanged, whereas the data of
Nolan and Kavanagh show a large increase at o =~ 0.4.
This increase is probably caused by the small simulation
size. It is interesting that C,, in our simulation remains
stable when the o < 0.4, but decreases gradually when
o> 04.

Figure 7 shows the C,, distributions of RCP states for
o of 0.3, 0.5, and 0.7; these distributions are divided
into contributions from spheres with different radii. Fig-
ure 7(a) shows that at o = 0.3, spheres with radii in the
range of 0.15-0.25 contribute most to the overall C,, dis-
tribution, followed by spheres with radii in the range of
0.25-0.35. For o = 0.5, the dominance of spheres with
radii in the range of 0.20 and 0.30 decreases, and the con-
tribution from spheres with radii in the range of 0.05-0.15
becomes more important; spheres with radii greater than
0.35 increase their influence on the overall C,, distribu-
tion as well [Fig. 7(b)]. These shifts of importance are
consistent with the changes of particle size distributions
from ¢ = 0.3 to 0 = 0.5. These effects become more
obvious when o > 0.7 [see Fig. 7(c)]. Another inter-
esting finding is that as o increases from 0.3 to 0.7, C,
decreases slightly for spheres with different radii ranges.
Generally speaking, then, except for the largest spheres,
the number of contacts for each sphere decreases slightly
as o increases.

B. Variable porosity random packing

For this algorithm, ¢ is controlled by ¢¢, o, and I.
Figure 8 shows ¢ plotted as a function of ¢ and I for a
range of 0. Once o is given, a desired ¢ can be obtained
by specifying ¢o and I according to this map. I is chosen
such that when ¢o € (0.45,0.50], I = 1; when ¢¢ €
(0.40,0.45], I = 2; etc. The lower ends of the curves
correspond to RCP and the upper ends to random loose
packing (RLP).

Figure 9 shows ¢ as a function of o for RLP simula-
tions. An experimental value [30] and simulated results
[16,20] are included for comparison. For o = 0 (i.e., ran-
dom packing of uniform spheres) the simulated ¢ is sim-
ilar to published results. As o increases, ¢ is consistent
with the results from Nolan and Kavanagh [20].

We show C,, = f(o) in Fig. 10, along with previously
reported results [16,20] for comparison. C,, from this re-
search is significantly higher than values of C,, found by
previous investigators. We believe this discrepancy is due
to differences among methods used to simulate particle
bridging. In our algorithm, a bridge is formed when a
sphere moves and comes in lateral contact with one or
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two stable spheres, whereas in Barker and Mehta’s sim-
ulation [16], for example, two or more touching spheres
are allowed to move simultaneously until a stable con-
figuration is achieved; the production of more bridges is
inherent in their approach. Usually, the more bridges
that are built, the fewer the contacts with these bridged
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FIG. 12. Effect of correlation length on packing porosity in
both the RCP and RLP states.

spheres, causing a lower C,, to be obtained. Which of the
bridging mechanisms is most realistic is an open research
question.

C. Spatially correlated random packing

We have found that both ¢ and C, are strongly in-
fluenced by not only the correlation length, I., but also
o and the domain size. Figure 11 illustrates this effect
for both ¢ and C,, in RCP and RLP states, in which
the correlation is set such that l../X = [l,/Y =~ 0.1
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FIG. 11. Random close packing for spatially correlated
packing as a function of simulation size and standard devi-
ation: (a) packing porosity, (b) mean coordination number.
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number in both the RCP and RLP states.
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and l../Z = 0.05. Error bars represent the standard de-
viation of each data point. In order to reach a constant
state, simulation size increases as a function of increasing
o.

Figures 12 and 13 plot ¢ and C,, versus the dimension-
less correlation length, L., for both the RCP and RLP
states, where L. = l.o/X = ly/Y, lc./Z = 0.05. Both
¢ and C, show increasing variation when I, > 0.1X.
These simulations were performed with about 5 x 10%
spheres. Clearly, much larger simulations would be re-

(a)

quired to produce results of high precision, especially for
large values of L..

Figure 14 shows different layers of the packing with
0=03,7,=0.25,l;, =l = 3.5 X Dp,, and I, = Dyy,.
Each image is created at a height of two D,,, above the
previous layer. The effect of the correlation structure can
clearly be seen on these images. Such spatial correlation
is typical of natural systems [6], and we know of no other
simulator that includes this feature. Future work will fo-
cus on quantifying correlation structures using advanced

(b)

FIG. 14. Visualization of a spatially correlated random packing, where each image has an approximate size of 5I..
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imaging techniques and solving for transport phenomena
at the pore scale in such systems.

V. CONCLUSIONS

An algorithm to simulate gravitationally stable ran-
dom packings of spheres with log-normal particle size dis-
tributions was developed and applied. Evaluation of the
packing porosity, coordination number distribution, and
radial distribution leads to the following conclusions:

1. The packing porosity for both random close packing
and random loose packing consistently decreases as the
standard deviation of the particle size increases.

2. Both the packing porosity and mean coordination
number attain near-constant states when the number of
packed spheres is greater than 3x 10 for a purely random
packing.

3. The mean coordination number decreases as the
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standard deviation of the particle size distribution in-
creases to values greater than 0.5 for both random close
packing and random loose packing states.

4. For correlated random packing conditions, the size
of the simulation required to achieve a given standard
deviation of either the mean porosity or the mean coor-
dination number depends upon the correlation length of
the covariance function and the standard deviation of the
particle size distribution. For a given correlation length,
the higher the standard deviation, the larger the domain
size that is required to minimize variations of packing
porosity and the mean coordination number.
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FIG. 14. Visualization of a spatially correlated random packing, where each image has an approximate size of 5l..



